

Design Report – CS Open Days

University of Twente

Samue l Cos te – s 2245973

Hans Goo r – s 2311720

Ti m Ko ree – s2341182

Ronan Oos tveen – s 2285371

Reinout Vos – s2385058

1

Contents

Contents ... 1

Abstract .. 3

Planning and Structure .. 4

Introduction ... 4

Sprints .. 4

Additional meetings ... 4

Task Division ... 5

Design trajectory .. 6

Sprint 0 ... 6

Sprint 1 ... 6

Sprint 2 ... 7

Sprint 3 ... 7

Sprint 4 ... 7

Sprint 5 ... 8

Delivery .. 8

Design and Academic justification ... 9

Overview .. 9

Gamification ... 9

Level design .. 10

Language Design .. 11

Branding & Motion .. 11

Tooling.. 12

Quality control ... 13

2

Goals .. 13

CI/CD .. 13

Workflow.. 13

Deployment.. 14

Notes .. 14

Conclusion .. 14

References ... 16

3

Abstract

 Tim Koree

The CS: Open Days project explores the use of gamification to intuitively teach

programmatic thinking. The application aims to guide, entice, and teach prospective

students about creating their own computationally intensive solutions and help them

interact with Teaching Assistants during the open days. Its UX- and UI interaction are

focused on occupying the user for half an hour, giving them the opportunity to learn about

the University of Twente through a fun and engaging workshop. Using technologies such as

NextJS, Typescript, Tailwind CSS and GSAP, the application creates a strong foundation for

future developers to build upon.

4

Planning and Structure

Tim Koree & Reinout Vos

INTRODUCTION

The team put a considerable amount of time into planning. While it is impossible to foresee

every unexpected obstacle, it is possible to plan considerable room for unexpected

circumstances. This entails primarily, to start early and avoid unnecessary crunching at the

end of the project cycle. This includes starting with writing a report early, having a

functional minimal viable product and planning in time to test the quality of the product.

SPRINTS
To ensure a consistent work-schedule, the 10-week project cycle is divided into 2-week

sprints. Making use of tools such as Discord, WhatsApp, Google Calendar and more, the

team aims to effectively communicate deadlines, schedule meetings, discuss important

topics and additional issues. At the start of each sprint, the primary objective will be set with

a task division. To support the effectiveness of sprints, daily stand-up meetings are

organized. These function as a method to inform and evaluate other members of progress

and issues. To ensure peer review session were sufficiently prepared for, the team internally

discussed what presentation format would be most effective. The two chosen presenters

would create presentation slides that encapsulate the progress made within the last print

iteration. Additionally, when planning for reports like the project proposal, design report or

reflection component essay, the team’s focus remains to start as early as possible when the

planning allows. For each of these mentioned assignments, a task division is created. The

work is then reviewed by all members to ensure its academic quality.

ADDITIONAL MEETINGS

As the application is produced with intent to deliver to a customer, it is of high importance

to collaborate effectively with the client. To ensure this, bi-weekly meetings are planned in

at the end of every sprint. This way the progress can be effectively displayed and additional

5

feedback can be implemented for a next iteration. Additionally, it provides time for

questions and clarity on the requirements and possibilities of the project. To communicate

with the project supervisor, meetings are planned when bigger progress is made within the

application and feedback is desired. This includes feedback on the academic quality and

additional requirements.

TASK DIVISION

To ensure an even task division, the project is divided into three sections. First, the game

logic. This entails designing levels as well as handling all the input the player gives. For

example, moving the block around the maze while making sure it cannot phase through

walls. This will serve as a sort of back-end for our application. This is handled by members

Hans and Samuel. Second, the code builder, loader and design. This includes the

functionality to create programs through moving pieces of code, creating a debug-mode,

allowing for a full-screen view of the program and creating the overall branding and design

of the application. This is handled by Tim. Due to his experience working professionally on

web applications, he works alone and aids others whenever necessary. Third, the maze,

star-system, level-switcher and onboarding. This includes displaying the game-logic in a

visually appealing manner, allowing for switching levels, giving users performance feedback

through the form of a star-based rating system and creating an onboarding to explain

functionalities of the application. This is handled by Ronan and Reinout.

6

Design trajectory

Reinout Vos

SPRINT 0

Prior to meeting the client, we wanted to already have a design to present to them, so we

quickly decided on a design and branding. As we are making a workshop for the university,

we wanted to include the university's styling by making use of the same colors as well the

simple geometric shapes. This resulted in a clean a simple, yet clean design for our

application. After creating an aesthetic for our product we brainstormed for a bit to think

about the actual workshop itself. We ended up being heavily inspired by a programming

language called Scratch which is designed to help visualize programming concepts by

allowing the user to drag and drop code blocks to create a program. This idea fits our

project very well as our goal of introducing the workshop attendees to some basic

programmatic thinking is remarkably similar. In order to gamify this process of teaching

programmatic thinking we decided to use the code block system to try to solve increasingly

more difficult puzzles in the form of mazes. Using this maze design, we have a lot of

freedom to expand once the simple maze gets repetitive. For example, we can add enemies

the player has to avoid, moving walls, etc.

SPRINT 1

During the first meeting with the client, we presented the above-mentioned design and

workshop idea we had come up with and they were enthusiastic. However, we did receive

some useful feedback about desired ideas and requirements: The biggest point is that the

game should get increasingly more difficult up to a point where the levels become almost

unsolvable. The idea behind this is that the players should be motivated to talk to peers and

teaching assistants present at the workshop. This includes asking questions, discussing their

results, etc. Furthermore, we discussed some smaller features, like the idea of a debug

mode and onboarding. Just like in any ordinary programming language this feature can be

used to help the player once it gets stuck on a level by allowing them to go back and forth

through the program line by line. The onboarding is used to help players with limited

7

programming experience. Once a new form of logic is introduced, for example an if-

statement, we will give the player an option to get some extra information as to how said if-

statement works.

SPRINT 2

As the general ideas and requirements were discussed in the previous meeting, this meeting

was a bit more technical. The biggest discussion point was how we should handle the

nesting of statements. We felt allowing for nesting would be a great addition to the

workshop, however it would be difficult to implement. Eventually, the client said this

feature was too essential to leave out, so eventually we decided to give it a go. This

warranted a change in our design, since the current code section is quite narrow, so nested

statements would eventually become unreadable once you nest them deep enough. In

order to solve this, we designed a full screen mode. Now the code section can be expanded

to full screen while a smaller version of the level will still be displayed to prevent having to

switch between the two views all the time.

SPRINT 3

Between the second and third meeting with the client we had the first meeting with our

supervisor. They gave us some useful ideas we wanted to discuss with the client as well:

The first idea was to give the player all the code blocks needed to solve a level, leaving the

player to place them in the correct order. A way to make this more challenging would be to

also throw in some 'fake' code blocks in there which the user should avoid.

SPRINT 4

As this was the last meeting during our development phase, we discussed what features

were could still implement within these last two weeks. During this sprint, before meeting

the client, we had the chance to do some user testing during one of the UT Open Days.

During this test we found out that the application still contained quite some bugs, so during

this meeting we mentioned this to the client. Furthermore, because we still had to fix these

bugs as well as finish some remaining essential features for playing the game, such as

8

making a score system or being able to swap between levels, implementing features like the

beforementioned fake code blocks, unfortunately did not fit within the scope.

SPRINT 5

This sprint discussion included little feedback or comments. Its focus was primarily on

displaying the progress made within the development of the application. We mentioned the

small issues we still had to fix before the deadline and the client seemed okay with it.

DELIVERY
A final meeting was planned to hand over the application. We showed the client the last

features we implemented and discussed how the code should be handed over. Concluding

the meeting by explaining the structure of the code and setup of the application to the

client.

9

Design and Academic justification

Tim Koree

OVERVIEW

To understand the application’s final implementations, it is relevant to first analyze the

client’s original requirements. The client communicated their high value on requiring

programmatic thinking and for its function as a communicative tool. The UT open days serve

to entice prospective students in joining a program at the University of Twente and the

application is aimed to reflect this. Its aim is to occupy visitors for a duration of 30 minutes

and allow for a fun and engaging experience. This includes, functioning to display what

programmatic thinking entails and allowing visitors to easily communicate with Teaching

Assistant’s through questions and feedback. The application’s primary objective becomes to

bring prospective students a fun, informative and memorable experience. Simultaneously,

these characteristics separate this project from existing gamifications of programming.

Rather than solely being a learning or gaming platform, its focus lies on connecting

prospective students with the University of Twente.

GAMIFICATION

To ensure the project’s primary objective, the application must make the complexity of

programming clear, but accessible enough to motivate beginner programmers to

participate. Research by the Bournemouth University displays that gamification can be used

to “increase performance and engagement of students” (A. Sahri, M. Hosseini, K. Phalp, J.

Taylor, R. Alie, November 2014). Among other methods, gamification can motivate users by

rewarding users through performance feedback or other rewards. Within this project, this

concept is applied by transforming complex problem-solving into a fun and interactive

game. It helps users understand what programming entails in a very fundamental sense but

can also display the satisfaction and enjoyment that complex problem-solving can bring.

This application gives users performance feedback to help gauge the relevance of efficiency

10

and performance within programmatic thinking. To aid in communicating these functions,

the addition of an onboarding and familiar design patterns are used. The use of a 2D-grid

and the applications movement all adhere to these familiarized standards, popularized by

games such as `Pac-Man` and other maze solvers. The use of gamification helps lower the

barrier of entry for prospective students and aids to create a memorable and engaging

experience.

LEVEL DESIGN

The motivation and engagement are also linked to the quality of the experience. The `CS:

Open Days` project must ensure users cannot finish before the total duration of the

workshop, additionally it aims to provide users with challenging and informative levels to

increase the quality of the experience. First, to ensure users cannot finish within the time-

limit, the game houses a total 49 levels that increase in difficulty, additionally the

application slows down users using animations and motion. The quality of the experience is

strongly linked to quality of the product, in which the intent of each level becomes key for

the quality of the level design. Levels are focused on introducing and applying increasingly

complex programming instructions. This is done using a whitelist, onboarding, level-design

and the addition of a scoring-system. The whitelist restricts access to instructions during

earlier levels, new instructions are introduced with an explanation within the onboarding

and practical application of the instruction. To encourage the use of more complex and

efficient instructions, the addition of a scoring system is put in place. The star-rating system

within the `CS: Open Days` application aims to increase this curiosity and engagement.

However, the level design extends beyond the quality of the experience within the

application. The increased difficulty of levels additionally increases the complexity of

solutions. The addition of a `debug-mode` functions as a tool for prospective students to

step-by-step iterate over their code. However, it also serves as a method for Teaching

Assistants to connect with prospective students. Users may find themselves stuck and are

encouraged to ask for help. A teaching assistant can use the debug-mode to aid in solving

the level and simultaneously inform prospective students about the University of Twente.

11

LANGUAGE DESIGN

Operability and intuitiveness of the `CS: Open Days` application is essential to avoid

frustration and decreased motivation amongst prospective students. The function of the

application is to require programmatic thinking and encourage users to create

computationally complex solutions. Due to the characteristics of the game, it is relevant to

analyze its implications from a language design perspective as the tools used within the

application allow users to communicate instructions through a written language. Its

requirements primarily include that it must be clear how these instructions relate to the

game-logic. A user must be able to easily read and comprehend the structure of the

language and written instructions. To structure this language, the idea of Functional

Programming was adhered to. For further understanding, the structure of popular

programming languages such as Python, C and Java was analyzed and deconstructed, as was

work by researchers such as P. Hudak and his paper on the “Conception, Evolution and

Application of Functional Programming Languages.” (P. Hudak, September 1989). Using

these sources, a very simple functional language was constructed, in which users can

communicate forms of navigations through a 2D grid.

BRANDING & MOTION
The design choices within the `CS: Open Days` application can all be justified from the

perspective of the `rationale`. The team’s philosophy on branding is the concept of

consistency. Therefore, every design choice is made from the perspective of the branding

and motion language. The concept behind the branding stems from aiming for a non-

intimidating look, versatility and connecting the `CS: Open Days` project with the University

of Twente without adding its logo or name. To achieve a non-intimidating aesthetic, the use

of simple chapes and rounded corners is used. The colour-scheme reflects the UT’s branding

and creates great contrast between the primary, secondary and tertiary colours. The

versatility and high expandability are achieved through the consistent design choices and

colours throughout the branding. It creates great potential for adding additional features

that can seamlessly fit within the design of the application.

12

TOOLING

The application’s technologies have a primary focus on maintainability. The `CS: Open Days`

project is built with NextJS and TypeScript in its base. NextJS extends React with further

optimization and server-side rendering, the framework is an excellent choice due to React’s

popularity and TypeScript’s readability and clarity. To create complex, but beautiful

animations, the team used GSAP. Its functionality to easily created layered animations with

beautiful easing’s makes it an obvious choice for speed and readability. The use of Tailwind

CSS and SCSS further speeds up workflow for efficient coding and the use of Studio-freight’s

Lenis scroll creates a beautiful smooth-scrolling experience whilst retaining the browsers

native behaviour. To create the designs and icons, Figma is another industry standard that

the team relied on.

13

Quality control

Samuel Coste & Hans Goor

GOALS

We wanted the ability to show our client the progress during the regularly scheduled

meetings, without having bugs or other faults on display. Besides this, we wanted a nice

development environment where we could show our application and not mess up critical

API methods during heavy development. To achieve this, we needed to implement a

continuous integration and deployment system with unit tests. We opted for automatic unit

testing with manual system and integration testing. This is because we work with several

different components that are split into separate code repositories and writing automated

tests combining them would not be time efficient.

CI/CD

For our main development platform, we chose a self-hosted instance of GitLab. This

software not only has the feature set for hosting a git repository, but for issue management

and continuous integration / deployment too. Since we did not want to set up additional

software and because we were all familiar with GitLab, we opted to use these integrated

features. In the first sprint we set up our base repositories and immediately set up

continuous integration for our logic repository and continuous deployment for our frontend

repository. Both projects use NPM for dependency management and running, so this was

easily set up.

WORKFLOW

Our workflow in GitLab consisted of branching from a stable development branch to create

a feature and merging back into the stable branch upon completion. Because we were strict

with internal coding guidelines, code would not be merged without tests into the logic

repository. This allowed us to incrementally add tests and assert the functionality of our

code. Upon merging, GitLab runs our continuous integration pipeline checking if all tests

14

pass with the newly added feature. Should any one of these tests fail, then the code would

not be merged. We also always had another pair of eyes review the new code before

merging.

DEPLOYMENT

Besides our automated unit testing, we also had continuous deployment for easy showcase

of the latest development and production versions of the app. We set this up in sprint 1 for

our front-end using a dedicated server and 2 domain endpoints. One hosting the

development version, the other the production version. Every time a push would be made

to either the development or main branch, the pipeline would run. This pipeline consists of

linting the code, building the release version of the app and creating a docker image to run

it. Then, it would reach the deployment stage where it would stop and run the docker image

on the dedicated machine. Ultimately, this means within 5 minutes of a merge being

accepted, the app would be live for display.

NOTES

We opted to not write unit tests for the frontend. Instead, we did regular manual checking

and verification of features. The time gained with automated frontend testing would not

surpass the initial time investment to set it up. Moreover, we already had unit tests for the

logic behind the front-end. Therefore, we knew functionality was correct before integrating

it into the front-end.

15

Conclusion

Ronan Oostveen

The careful consideration done during the set-up and design phase of this project

significantly helped us later in the project. First, the decision on the specific technologies

allowed us to quickly design, develop and troubleshoot our application. The planning and

especially the daily stand-ups also aided us in making serious progress early on. The task

division also prevented a lot of confusion. And in the bi-weekly meetings with the client and

supervisors, we got useful feedback which helped us plan the next sprints.

To conclude the design justifications, we were able to achieve all the requirements. The

application has an accessible interface but can keep an experienced user busy for 30

minutes. The design and branding are consistent throughout the application and consistent

with the university branding.

Overall, we are very satisfied with the progress made during this project and proud of the

final product. The user testing showed us that the product achieves the desired goals of the

client. In this paper, we also explored the academic background behind the design of our

application and used this to support our design choices.

16

References

A. Shahri, M. Hosseini, K. Phalp, J. Taylor, R. Alie. (November 2014). Towards a Code of

Ethics for Gamification at Enterprise. Retrieved from

https://www.researchgate.net/publication/275968573_Towards_a_Code_of_Ethics_for_Ga

mification_at_Enterprise

P. Hudak. (September 1989). Conception, Evolution and Application of Functional

Programming Languages. Retrieved from

http://www.dbnet.ece.ntua.gr/~adamo/languages/books/p359-hudak.pdf

https://www.researchgate.net/publication/275968573_Towards_a_Code_of_Ethics_for_Gamification_at_Enterprise
https://www.researchgate.net/publication/275968573_Towards_a_Code_of_Ethics_for_Gamification_at_Enterprise
http://www.dbnet.ece.ntua.gr/~adamo/languages/books/p359-hudak.pdf

